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ABSTRACT

We have developed a novel hand sensor device designed to mitigate sensor malfunction caused
by palm bending and to adjust output values by considering palm hardness. The primary goal
of this device is not to acquire accurate hand load values but rather to gather pertinent informa-
tion for estimating the lumbar load. Therefore, leveraging the load and posture data captured
by this sensor, we endeavoured to estimate the electromyography (EMG) value - specifically
the muscle action potentials in the lumbar region — using myoelectric potential sensors and
adopting deep learning methodologies. The estimated values closely matched the EMG results
and demonstrated a strong correlation with actual measurements of vertical luggage move-
ment. Additionally, the usefulness of the hand sensor device was validated through simulations
conducted with varying levels of information, thereby elucidating the impact of explanatory
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variables used in the estimation process.

1. Introduction

Regarding the number of occupational illnesses result-
ing in four or more days of absence from work, as
compiled by the Ministry of Health, Labor, and Wel-
fare, back pain accounts for approximately 60% of cases
annually [1]. Nursing care is the most common occu-
pation, with more than 70% of nursing care workers
experiencing back pain [2]. As the population ages,
labour shortages become more pronounced, posing
challenges in securing adequate human resources, par-
ticularly if back pain issues persist unresolved. There-
fore, it becomes crucial to predict and comprehend
the tasks that contribute to back pain, emphasizing the
necessity of measuring lumbar load, especially during
activities involving heavy lifting.

Over the years, extensive research has been con-
ducted to the body’s condition, leading to reports
on work posture estimation [3] and the relationship
between work postures and low back pain [4]. Muscle
activity is typically measured using myoelectric poten-
tial sensors to determine bodily dynamics [5]. These
sensors capture changes in the skin’s electrical poten-
tial caused by muscle activity (EMG: Electromyogra-
phy). EMG is widely recognized as a reliable indicator
of muscle activity [6]. However, the challenge arises
from the necessity of directly attaching the myoelectric
potential sensor to the skin with adhesive tape, which
can weaken due to repeated movements or perspira-
tion, leading to increased contact resistance and com-
promising the accuracy of measurements. Therefore,

ensuring accurate measurements over an extended
period becomes crucial.

However, since the load exerted on the body is pre-
dominantly transmitted through the sole, there has
been a development of sensors capable of measuring
sole load, leading to numerous studies [7] and com-
mercial applications. However, when carrying heavy
objects, the lumbar load varies with different postures.
Therefore, while knowledge of sole load is valuable, it
alone is insufficient to accurately estimate the lumbar
load on the lower back. Therefore, it becomes essential
to measure the load applied to the hands, correspond-
ing to the force point. Various devices, such as grasping
pressure distribution sensors [8] and high-density con-
formable tactile sensing gloves [9], have been explored
for hand load measurement. However, these devices,
tailored for precise grasping load measurement, present
issues such as sensor disconnection due to grasping,
lack of strength against heavy objects, and difficulty in
detaching owing to their intricate arrangements. There-
fore, they lack practicality for repeated use by workers
for general purposes.

Therefore, our endeavour focused on estimating
lumbar load during heavy object grasping by employing
deep learning techniques. This involved utilizing load
information applied to both hands, measured through
a pressure-sensitive conductive elastomer, along with
posture data obtained from an inertial sensor. The
development conditions for the hand sensor device
utilized in this study were as follows:
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Figure 1. Pressure-sensitive conductive elastomer.
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Figure 2. Sides of clenched fist.

(1)
2)
©)

Measuring long working hours at all times

Ease of detachment

Not obtaining accurate hand load values, but rather
to gather the essential information required for
lumbar load estimation.

The accuracy of a hand sensor device, designed to
gather information crucial for lumbar load estimation,
was verified through simulations [10]. However, this
study did not address the extent of influence exerted by
the explanatory variables used in the estimation pro-
cess, leaving the usefulness of the hand sensor device
ambiguous. To address this gap, the current study dis-
cusses the efficacy of each sensor by estimating lumbar
load with reduced information on explanatory vari-
ables, supplementing the previous validation efforts.

2. Development of hand sensor device
2.1. Consideration of sensor placement locations

A pressure-sensitive conductive elastomer (Figure 1),
utilized as a pressure sensor in hand sensor devices,
exhibits changes in resistance not only in response
to compressive forces but also to bending, thereby
altering its outputs value. Deciphering the specific
data causing resistance changes posed a challenge.
Therefore, it became imperative to minimize sen-
sor output attributed to bending in pressure sensors
intended for hand sensor devices. As illustrated in
Figure 2, when the hand clenches, the joints and the
skin surface between them contort into a triangular
shape. Placing a pressure-sensitive conductive elas-
tomer in this area results in output value fluctuations
by finger movements, even in the absence of exter-
nal loads. However, the areas exhibiting less defor-
mation during hand movement are limited. The fin-
ger pulp (blue), fingertip (green), thenar (orange), and
hypothenar (red) [11] are viable locations for sensor
placement.

46

Finger pulp

_— Fingertip

thenar

hypothenar

Figure 3. Areas with slight deformation of skin surface.

Table 1. Hardness of palm part.

Part Asker type C*" hardness (Ac)
Finger pulp 5
Fingertip 15
Thenar 5
Hypothenar 5

«1: Asker Type C is a type of Asker durometer specifically designed for
measuring the hardness of soft rubber and sponges.

Subsequently, our attention turned to the properties
of the pressure-sensitive conductive sensors. Generally,
sensors undergo calibration using a hardboard. There-
fore, when measuring pressure on a palm with a sur-
face of different softness and hardness levels depend-
ing on its location, accurate pressure readings may
not be measured [12]. As depicted in Table 1, the
hardness of the proposed sensor arrangement candi-
dates presented in Figure 3 is described in terms of
Asker Type C hardness (Ac). Consequently, upon com-
paring the fingertips near the bone with areas like
the finger pulp or thenar, which are less influenced
by bone structure, differences in hardness became
evident.

Therefore, the pressure-sensitive conductive sensor
shown in Figure 3 was situated on gel-like materials
characterised by Ac values of 4, 15, 20, and 30. The
variation in resistance upon force application is illus-
trated in Figure 4, where the horizontal axis represents
the applied force and the vertical axis denotes the sen-
sor’s resistance. The figure reveals minimal alteration
at Ac > 20; however, distinct resistance variations were
observed at AC < 20, even under identical force appli-
cation. Additionally, the occurrence of hysteresis is evi-
dent due to the inherent nature of the sensor.

Figure 5 shows the relationship between hardness
and sensor resistance at a load of 3 N, corresponding
to the data illustrated in Figure 4. The horizontal and
vertical axes represent hardness and resistance, respec-
tively. The dashed line approximates a straight line as a
function of Ac, indicating a proportional relationship
between the sensor’s resistance and hardness.

Let R, represent the minimum resistance observed
during calibration on a hard board, and let R denote
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Figure 4. Force vs. sensor sensitivity.

40 ¢

35 d
30 ST
g s P~

e[

Q

20 =

Resistan
O
/

10 =

10 12

Ac

14
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Figure 6. Correction results.

the resistance at hardness A¢ (A¢c < 20). The corrected
resistance, RC, can be expressed using the following
experimental formula:

Ac
Re = (R - 2Rmin) X E + Ruin.

A hardness-independent relationship between the load
and sensor resistance can be achieved by adjusting this
relationship, as illustrated in Figure 6. Furthermore, a
reduction in hysteresis was observed. In this study, the
attained accuracy was deemed sufficient, given that the
primary goal was not to ascertain the precise load value
exerted on the hand, but rather to accurately obtain
the load information required for estimating lumbar
loading.

Based on these results, we attached the existing
pressure-sensitive conductive elastomer, as illustrated
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Figure 7. Examination results of sensor placement location.

Table 2. Experimental conditions.

Casel Case2

in Figure 1, to the sensor placement positions outlined
in Figure 3. Subsequently, we conducted an experi-
ment involving gripping a 19.6 N box using the four
configurations presented in Table 2. The load mea-
surement results for each configuration are depicted
in Figure 7. Interestingly, utilizing either fingertip or
thenar 4 hypothenar locations yielded similar readings
to the test weight. Given the expectation that the thenar
and hypothenar muscles would remain unresponsive to
posture changes, the finger pulp and fingertip emerged
as the identified locations for load sensor attachment
on the hand sensor device, based on the outcomes of
the experiment.

2.2. Structure and features of load sensor

Existing pressure-sensitive conductive elastomers have
circuit boards comprising flexible printed circuits
(FPCs). When fabricated into a glove, it does not
fit well because of its stiffness, and its shape must
conform to that of a glove. Therefore, we developed
a novel sensor. The sensor structure is a structure
in which the pressure-sensitive conductive elastomer
(Inastomer: manufactured by INABA RUBBER CO,,
LTD.) and the circuit part printed with silver nanopaste
on a 0.1-mm-thick TPU sheet are cut into the shape of
a glove overlap, as illustrated in Figure 8.

Furthermore, when the silver nanopaste circuit pat-
tern was arranged in a comb shape, the wire broke only
in the direction from the bend to the first joint and
broke. As demonstrated in Figure 9, the wire broke only
when the tip of the sensor was bent at the first joint.
Therefore, the sensor did not lose its functionality.
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Figure 8. Sensor structure to acquire load information.
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Figure 9. Example of disconnection.

2.3. Attitude information acquisition utilizing
inertial sensors

To estimate lumbar load, posture information is
required in addition to load information on the hands.
This is because lumbar load differs depending on
whether it is supported near the body or at a certain dis-
tance. Therefore, a nine-axis inertial measurement unit
(IMU) comprising an acceleration sensor (three axes),
gyro sensor (three axes), and magnetometer (three
axes) was utilized to obtain posture information such as
palm inclination and hand position. The posture infor-
mation obtained from the nine-axis IMU comprises the
quaternion g, which indicates the tilt of the palm calcu-
lated from the nine axes and the position information
obtained by integrating the acceleration sensor values
twice. The quaternion q is obtained from the scalar part
qo and the vector parts g1, g2, and g3 in

9 =190 91,92 3]".

2.4. Prototype of hand sensor device

We developed a prototype for a flexible and detach-
able hand sensor device, as illustrated in Figure 10.
This device features six pressure-sensitive conductive
sensors placed on the pulp and fingertips of each fin-
ger. Mounted on the back of the hand are a nine-axis
IMU (BOSCH BNOO055) and a microcomputer board
(Espressif ESP32-DevKitC-32D), which can transmit
the collected sensor data via Bluetooth low energy
(BLE). Moreover, the same model of the nine-axis IMU
was employed to monitor waist movement.
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Figure 10. Prototype of hand sensor. (a) Palm; (b) Back hand.
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Figure 11. Load vs. resistance value.
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Figure 12. Measurement results of time series data.

2.5. Evaluation of prototype hand sensor device

Figure 11 illustrates the change in resistance observed
in the prototype hand sensor device upon the applica-
tion of a load to the index finger. The horizontal axis
represents the applied load, while the vertical axis rep-
resents the resistance of the sensor device. Our findings
confirm the linearity of the output values within the
range of 4.9-14.7 N.

Next, 9.8 and 98 N loads placed on the floor were
lifted with both hands, placed on the table, and then
lowered again to the floor with the hand sensor device
attached; each action was repeated twice. The total out-
put value, Hj, was obtained from the output values
of the left-hand Hj, and right-hand Hp utilizing Eq. 1.
Here, we set K; = 0.7 and K, = —2.5 and performed
level matching with the actual load. The results are pre-
sented in Figure 12. The horizontal axis represents time,
and the vertical axis represents the load value obtained
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Table 3. Sensors utilized for estimation by deep learning.

Data for lumbar load estimation Data for learning

Type Pressure sensor Nine-axis IMU EMG
I =

@’ .
Position N v | c -
Number 12(6 x 2) 3241 1

Acceleration: ay,
Qyh, Azh
Quaternion:

Data type Load:F 41,92,93.94 EMG: E
Output 12 21 1
from Eq. 1.

6
Hay = Ky ) (Hii + Hgi) + K
i=1

(1)

However, it was observed that H,; > 0. These results
affirm the linearity of the prototype hand sensor device.

3. Lumbar load estimation utilizing hand
sensor device

3.1. Experimental conditions

As illustrated in Table 3, 33 data points were used
for estimating lumbar load. This comprised 12 data
points for Load F acquired from the hand sensor
device on both hands, and 21 data points encompassing
three-axis acceleration (ay, ayp, and az;) and quater-
nion (g1, g2, q3, and q4) gathered from the nine-axis
IMU installed on both hands and waist. Addition-
ally, EMG readings of the erector spinae muscle were
taken, assuming a proportional relationship between
lumbar load and muscle activity. Due to the absence of
left/right movements during the simple up-and-down
motion, EMG measurements were conducted on one
side only. The recorded EMG values were processed to
derive Root Mean Square (RMS) data with an averag-
ing window of 500 ms. The data collection method for
the lumbar load estimation experiment proceeded as
follows:

(1)
()
3)
(4)
(5)

Grasp the luggage on the table.

Place the luggage on the feet and let it go.
Grasp the luggage on the feet.

Place the luggage on a table and let it go.
Repeat Steps 1-4 ten times.

Two distinct loads were used: a lighter load of 9.8
N and a heavier load of 98 N. Furthermore, two dis-
tinct postures were adopted for upward and downward
movements of the load, as illustrated in Figure 13:
bending and extending the knees, and stooping with-
out bending the knees. Subjects were selected from the
pool of authors, and careful ethical considerations were
ensured throughout the study.
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(1) Bending knees

(2) Stooping

(3) Lifting

Figure 13. Postures for moving load up and down. (1) Bending
knees; (2) Stooping; (3) Lifting.

Table 4. Deep learning parameters.

Learning times 100epoch
Dropout rate 0.5
Number of training data points 33,097
Number of data points for verification 9838

The neural network model adopted for estimating
lumbar load was a recurrent neural network (RNN)-
based deep-learning approach, tailored for estimating
relatively short time-series data. To enable calculations
on the microcomputer, we optimized the model size
by utilizing four hidden layers with 33 inputs and one
output, as illustrated in Figure 14. Model construction
involved simulating multiple variants using the neural
network console developed by Sony Network Commu-
nications Inc., and the model exhibiting the highest val-
idation accuracy was adopted. To prevent over-fitting,
the learning rate was adjusted. Table 4 presents the deep
learning parameters for the activation function f, as
expressed by the following equation:

n<0
n>0"

an,
n,

flarm) = {

A parametric rectified linear unit (PReLU) was employed
over a standard rectified linear unit (ReLU), commonly
utilized in deep learning, because ReLU tends to nullify
negative values of the input data. In each layer of the
neural network structure, the alpha parameter of the
PReLU was automatically adjusted during simulation
using a neural network console. This approach enabled
the determination of the optimal solution for each layer,
enhancing the model’s performance.

3.2. Estimation result utilizing deep learning

Eight out of the ten measurements were adopted as
training data, while the remaining two were designated
for validation purposes. The validation results are pre-
sented in Figure 15, where the horizontal axis repre-
sents time, and the vertical axis signifies the lumbar
load. The EMG measurement results (blue) and the
deep learning estimation results (orange) are plotted for
comparison. Consequently, even when there are alter-
ations in luggage weight or posture, the peak values and
timing of the lumbar load can be accurately estimated.
The correlation coeflicient was 0.92.
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Figure 15. Estimated results utilizing verification data.

Focusing on the bent-knee posture (Figure 15;
B1-B4), both the measured and estimated values
demonstrated that the lumbar load increased with
the weight of the luggage. The peak value when lift-
ing a load increased significantly, and both the mea-
sured and estimated values exhibited the same ten-
dency. For instance, the first (Figure 15; B3) and second
(Figure 15; B4) lifts of a 98 N load involved the same
motions; therefore, one would expect the peak values
to be approximately equivalent. However, there was an
experimental error of approximately 0.3 in the mea-
sured EMG values for both instances B3 and B4. Inter-
estingly, while the peak values for the first (Figure 15;
B3) and second (Figure 15; B4) lifts of the 98 N load
exhibited similar experimental error of approximately
0.3 in the measured EMG values, the difference in esti-
mates from the hand sensor device was approximately
0.05, which closely approximated the peak value.
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Figure 16. Error rate for each time period.

Next, we examined the postural differences when
the load weighed 9.8 N. Generally, the lumbar load
showed a tendency to increase more during stooping
(Figure 15; S1, S2) compared to the bent-knee posture
(Figure 15; B1, B2), a trend also reflected in the esti-
mated values. Similarly, the peak EMG values measured
during the first and second lifting movements exhib-
ited errors of approximately 0.3. In contrast, the error
in the estimated values remained relatively stable at
approximately 0.05.

Additionally, we calculated the error rate for each
period (Figure 16). High error rates were observed
between the unloading and lifting periods when the
lumbar load was low. The mean and standard devi-
ation of the error rate were approximately 0.21 and
0.23, respectively. Figure 17 shows a histogram of the
error rates. The horizontal axis represents the error
rates, whereas the vertical axis represents the frequen-
cies (blue bars) and cumulative percentages (orange
boxes). The cumulative error rates up to 0.2 was 63.2%,
and up to 0.3 were 80.8%, respectively.

Furthermore, to assess the efficacy of the hand sen-
sor device, we estimated the lumbar load using a limited
number of sensors, as shown in Table 5. The simulation
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Table 5. Explanatory variables used and error rate for max peak value.

Acceleration Quaternion Bending Stooping
Type Load Hand Lumbar Hand Lumbar 9.8N 98N 9.8N 98N
1 Use Use Use Use Use —0.07 0.05 —0.03 0.01
2 - Use Use Use Use 0.04 —0.20 —0.08 —0.24
3 Use - - Use Use —0.07 —0.03 0.03 0.11
4 Use Use Use - - —0.03 —0.06 0.07 0.01
5 - - Use - Use —0.26 —0.35 —0.15 —0.38
6 Use Use Use - - —0.08 —0.09 —0.28 —0.20
3500 100% These results confirm the usefulness of the hand
2800 _/l/".*.—k- 80% sensor device.
o mmm Frequency g Future endeavours will focus on expanding the sub-
2100 L 60% & . . . .\ .
g —#—Accumulation ° 2 jects pool and introducing additional conditions, such
g 1400 40% & as loads and motions. By conducting further exper-
i < . . .
700 20% iments, we aim to broaden the scope of estimations
. - achievable under real-world conditions.
N 0

0 0.10203040506070809 1
Error rate

Figure 17. Histogram of error rate.

results are listed in the same table. Without the pres-
sure sensor (Type 2), a significant error was observed
in the peak value at 98 N. When the hand sensor
device was not utilized (Type 5), substantial errors were
observed in the peak values for all loads. Notably, a large
error occurred during stooping when only the hand
sensor device (Type 4) was utilized, and the nine-axis
inertial sensor at the waist was not used. In contrast,
the maximum error rate using all sensor values (Type
1) was 7%, underscoring the usefulness of the hand
Sensors.

4. Summary

We have developed a novel hand sensor device that
mitigates sensor malfunction caused by flexion and
corrects output values by considering palm hardness.
Moreover, we attempted to estimate the lumbar load
using deep learning based on the load information of
the hand and posture information measured by the
developed sensor. Through rigorous experimentation,
we developed a highly accurate lumbar load estimation
model. During a simple up-and-down motion, the esti-
mated values closely matched EMG readings. The error
rate of the estimation results was found to be approx-
imately 7% at the peak value. Notably, the absence of
even one sensor from the hand sensor device led to an
increase in error rates.

Furthermore, during the experiment utilizing the
myoelectric potential sensor, experimental errors arose
owing to fluctuations caused by the fact that the EMG is
abiological signal. However, the hand sensor device was
designed to yield consistent and stable output, thereby
confirming its usefulness.
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A hand sensor device can enable real-time measure-
ment of lumbar load, facilitating the control of assistive
robots and fatigue management.
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