3D-1

他誌発表論文 再録 第32回計測自動制御学会中国支部学術講演会論文集 pp. 103-104 本論文は公益財団法人計測自動制御学会によって著作権が保持されています。

予知保全を目的とした非接触振動周波数計測技術の開発 O吉田 大一郎* 福留 祐太* 山根 知之* * 地方独立行政法人鳥取県産業技術センタ-

Development of non-contact vibration frequency estimation technology for predictive

maintenance

•Dai-ichiro Yoshida*, Yuta Fukudome* and Tomoyuki Yamane* *Tottori Institute of Industrial Technology.

Abstract: We attempted non-contact vibration frequency measurement of a vibrating object using a line scan camera and a line laser. By improving the time-series data acquisition method, it became possible to measure vibration frequency of 100 Hz with amplitude 0.01 mm p-p at a distance of 1 m from the test sample.

1. はじめに

工場の製造装置等は大きな不具合が生じると, 製造が滞るだけでなく,修繕に多くの時間と費 用が発生してしまう. そのため, 予防保全とし て定期的に点検、メンテナンス、部品交換等が 行われてきたが、予防保全は不必要な部品交換 代や人件費が発生する. そのため, 近年は予防 保全から予知保全への転換が進められている. 予知保全とは、常に製造装置等の状態を監視し、 必要に応じて点検、部品交換を行う考え方であ る. その予知保全の中で,特に重要な役割を果 たしているのが振動モニタリングである.振動 センサを使用して異常状態を検知することによ り、装置の異常を把握することが出来る.しか し、装置等の状態を常時監視するためには、振 動センサを設置する必要がある.取り付けたい 箇所が高温である場合,可動部である場合,形 状が異形である場合等,特定の制約が存在する ことがあるため、非接触での振動測定のニーズ が高い.

異常状態を検出し,予知保全に活かすには, 異常に伴い現れる振動周波数を検知する必要が ある.我々は以前に,光切断法を用いた非接触 での振動振幅計測技術を開発したが、当該技術 では振動周波数までは計測できない¹⁾. それは, レーザーの動いた幅を計測するために,長時間 露光というカメラの撮影技法を用いているため である. そこで本研究では, 通常のカメラに替 えて,超高速連写が可能なラインスキャンカメ ラを用いることでレーザーの動きの時系列デー タを取得し、周波数解析を行うことで異常状態 の検知を試みた.

2. 実験方法

Fig.1 に実験装置の概要を示す. 試験品は, 振 動試験機上に固定され,水平方向に加振される. レーザー光源は、 ライン状のレーザーを試験品 に投影する.カメラはレーザー光源の上に設置 され、レーザー輝線を斜め上方から撮影する. カメラのファインダーで見たレーザーラインは, 振動により試験品が前後するにつれ、その位置 が上下に動いて見える.本計測システムでは, その上下動の超高速連写が必須であるため、ラ インスキャンカメラを用いる.

Fig.2 に周波数計測方法を示す. 超高速連写が 可能なラインスキャンカメラを用いて、レーザ ー輝線を0秒から*4t*秒ごとに撮影する.カメラ のファインダー内では、振動に伴う試験品の微 小移動に応じて,レーザー輝線の位置がシフト する.よってラインスキャンカメラの,レーザ ーを捉えている画素のピーク位置は微小時間ご とに刻々と変化していく. ピーク位置の時間変 化をプロットすれば時系列データが得られ、時 系列データの周期間隔を調べることで試験品の 振動周波数が計測可能となる.本研究では、周 波数の算出にFFT(Fast Fourier Transform)周波数解 析法を用いた. FFTは, 振動の時系列データより 含まれる周波数成分を明らかにする解析手法で あり, 複数周波数が混在していても分離が可能 である.

Fig.1 System overview

Fig.2 Method of focusing on peak position

Table 1 に本計測の実験条件を示す.工場の製 造装置等の異常振動を検知するため,10000 rpm 相当の周波数計測を最終目標とし,本研究では 10~100 Hzの範囲で実験を行った. そのため, ラインスキャンカメラの取り込み周波数は 1200 Hzに設定した.ライン状レーザーの色は赤を用 い、外乱光の影響を少なく、かつレーザーの光 を効率的に抽出するため 600 nmのロングパスフ ィルターを用いた.

Camera	Line scan 2048 x 1 pixels. CMOS sensor Sensor size : 14.3 mm
Scanning frequency	1200 Hz
Lens	Aperture : 2.8 Focal distance : 105 mm
Filter	Long pass filter (λc 600 nm)
Wavelength of Laser	640 nm
Distance	Camera and test sample : 1 m Laser and test sample : 1 m
Vibration frequency	10、50、100 Hz
Vibration amplitude	0.1、0.01 mm p-p
Development environment	Matlab 2016
FFT	1024 points

 Table 1 Experimental conditions

3. 結果と考察

Fig.3 に試験品を振動周波数 100 Hz, 振動振幅 0.1 mm p-pで加振させた際の時系列データとFFT 周波数解析の結果を示す.時系列データは,レ ーザー位置の移動量が少ないため,形状は方形 波であった.40 ポイント付近に外れたデータが あるが,全体的に周期的なデータは取得できて おり,FFT周波数解析の結果得られた周波数は 99.6 Hzであり,試験品に加えた振動周波数と一 致した.

Fig.3 (a) Time series data and (b) FFT result of 100 Hz 0.1mm p-p vibration

Fig.4 に振動振幅は 0.1 mm p-pのまま,振動周 波数を 10 Hz, 50 Hzとした際のFFT周波数解析結 果を示す. それぞれ, 10.5 Hzと 50.4 Hzのピーク とその整数倍周期の周波数が検出され,試験品 に加えた振動周波数と一致した.

Hz and (b) 50 Hz

次に振動振幅を 0.01 mm p-pにして実験を行っ たが、時系列データは常に一定の値を示したた め、周波数を得ることはできなかった.この原 因として、振動の振幅が小さく、レーザーを捉 えている画素の移動が1画素未満であったこと が考えらえる.

そのため、ピーク位置移動の時系列データで はなく、固定した1画素の受ける明るさの時系 列変化に着目した. Fig.5 に示すように、レーザ ーの位置がわずかに上下する際に、着目した1 画素で検知する明るさは刻々と変わると予想さ れるため、その時系列データを得られれば、そ の変化は元の振動周波数を引き継いでいるので はないかと考えた.

Fig.6 に1画素の明るさに着目する方法で得られた時系列データと,FFT周波数解析結果を示す. 振動周波数と振幅はそれぞれ,100 Hz,0.01 mm **p-p**である.時系列データにはノイズが乗ってい るが,FFT周波数解析の結果は 100 Hzにピーク が検出されていることが分かる.

Fig.6 (a) Time series data and (b) FFT result of 100 Hz 0.01 mm p-p vibration

最後に,製造装置等の不具合が生じる前兆と して,通常運転の振動周波数の他に異常状態特 有の周波数が混ざると仮定し,次の実験を行っ た.

試験品に市販のスピーカー (25 W) を取り付け, 安定化電源により 77 Hz, 1 V_{0-p}の交流電圧を印 可した.この状態で試験品を 100 Hz, 0.1 mm ppで加振し,スピーカー表面部の振動周波数を計 測した.時系列データの取得には, 1 画素の明 るさに着目する方法を用いた.Fig.7 に示すよう に,FFT周波数解析の結果から 77.3 Hzと 99.6 Hz にピークが検出された.これにより,正常周波 数に異常周波数が混在していても判別可能であ ることが示唆された.

Fig.7 (a) Time series data and (b) FFT result of 100 Hz 0.1mm p-p vibration with speaker playing at 77 Hz

4. おわりに

ラインスキャンカメラとライン状レーザーを 用い,振動する物体の非接触振動周波数計測を 試みた.時系列データの取得方法を工夫するこ とで,試験品から1mの距離において100Hz, 0.01mm p-pの振動の周波数計測が可能であった. また,複数周波数が混在した状態でもFFTを用い ることで周波数の分離が可能であり,本技術を 予知保全へと活用する見込みが立った.より微 小な振幅を計測するためには,フィルターやレ ンズ,カメラ画素数等の見直しが必要である.

参考文献

 吉田大一郎他:光切断法を用いた振動振幅 計測,計測自動制御学会中国支部第28回学 術講演会論文集, pp47-48 (2019)