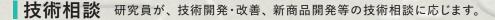
Innovation Together

地方独立行政法人 |鳥取県産業技術センター

私たちはものづくり企業のパ

鳥取県産業技術センターは企業の皆さまの研究室として、 県内企業の支援を行っています。

これからも研究開発・技術相談・試験分析・人材育成・起業化支援など さまざまな面から鳥取県産業の発展を目指します。



企業の皆さまの研究室です。

地方独立行政法人鳥取県産業技術センターは、「企業の皆さまの研究室です。」を キャッチフレーズに、産業技術に関する試験研究やその成果の普及を推進するととも に、ものづくり分野における技術支援、人材育成を積極的に展開することにより、県内 の産業活力の強化を図り、地域経済の発展と県民生活の向上に寄与してまいります。 ものづくり企業のパートナーとして、どうぞご活用ください。

技術支援

現地支援 研究員を派遣し、生産現場等での技術的課題の解決や技術移転等を支援します。

■施設の技術支援分野について

【鳥取施設】電気・電子、有機材料の分野 【米子施設】機械、計測、金属・無機材料の分野 【境港施設】農畜水産物、機能性食品、発酵食品、バイオテクノロジーの分野

研究開発

研究開発 新たな素材開発研究や製品開発研究を行います。

受託・共同研究 〇受託研究/新規事業展開へのアイデアがある県内企業等からの受託研究に取り組みます。 〇共同研究/企業が抱える研究課題について共同研究を行います。

初たな糸竹開元明九ド表明開元明九を刊いより。

第5期中期計画の概要

(計画期間/2023年4月~2027年3月)

「県内企業の技術力向上や高収益化 県内産業の発展につながる質の高い技術支援」を目指して

- 活動の柱
- ●県内企業への幅広い技術支援
- ●挑戦する企業の技術開発支援
- 活動方針

SDGs・カーボンニュートラルに向けた取組

- ●デジタルトランスフォーメーション(DX)推進による生産性向上
- フードテックを活用したフードロスの削減と食品の高付加価値化

利用·分析

- ■機器開放 計測、分析、試験、測定、加工等の試験研究用機器をご利用いただけます。
- 依頼分析 試験分析・測定・加工等を行います。

人材育成

- 人材育成
- ○企業現場の技術的課題に対応したオーダーメイド型の研修を行います。
- ○技術の高度化に対応できる産業人材の育成のための研修会を行います。
- 起業化支援 ○起業化支援室 (インキュベーションルーム) を貸し出します。
 - ○新事業の創出、新分野進出のための支援を行います。

●お気軽にご相談ください。詳しくはホームページをご覧ください。

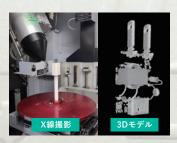
電子・有機素材研究所では、電気電子、有機材料に関する「ものづくり技術」に係る技術支援や研究開発を行っています。

■電子システム グループ

電気・電子関連製品などの制御技術、信頼性評価技術、AI、IoT(計測技術、ソフトウェア)に関する研究開発・技術支援を行っています。

▶ 有機材料 グループ

各種有機材料の機能化技術、加工技術、評価技術に関する研究開発・技術支援 を行っています。



- ●デバイスの電子回路を設計・試作したい。
- 製造工程における外観検査を自動化したい。
- ●工業製品・部品に付着した異物を特定したい。
- ●仕様変更のために部品の強度を比較したい。

機器紹介

電子回路の設計から家電製品、産業用機器の信頼性評価の他、材料面では成分分析、 異物分析から強度測定まで、各種機器で幅広く対応しています。

X線CT装置

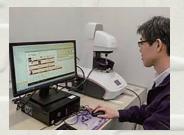
対象物を回転させながら X 線で撮影 して、非破壊で内部を調査します。対 象物内部の構造や破損・変形・空洞 等がわかり、また、3 D にモデリング することができます。

電波暗室

家電製品・産業用機器等の空間を 伝わる電磁波ノイズについて、外部 からのノイズに耐性があるか、また は機器が発するノイズのレベル等 を評価することができます。

電子顕微鏡

電子線を照射することにより、製品 や部品の表面状態を高倍率で拡大 して観察・撮影する装置です。付属 の分析装置で材料や異物、変色部 の元素分析を行うことができます。


赤外分光光度計(IR)

プラスチック、ゴム、繊維等の材質を 判別することができます。工業製品 の外観や性能の不良原因となる製 品への付着異物の特定のほか、品質 管理や工程改善等に活用できます。

材料強度試験機

プラスチック、フィルム等各種材料の引張、曲げ、圧縮強さを測定できる他、電子部品せん断強さ、プリント基板45°剥離強さといった評価も行うことができます。

熱分析システム(レオメータ)

インク、塗料や接着剤等の液状やペースト状試料の粘度や動的粘弾性の測定ができます。例えば、インクや塗料の塗り易さやタレ、接着剤の硬化等を評価することができます。

主な取組み

DX推進とSDGs・カーボンニュートラルに向けた取組みを企業の皆様と共に進めます。Al·IoT技術を活用して県内製造業の省エネルギー化や生産性向上を図るとともに、有機素材の開発や応用によって低炭素社会の実現を目指します。

生産性向上のためのDX推進

AIやIoTを活用した自動化・最適化・予知保全等の解決策を提供し、生産性向上のためのDX推進に取組みます。

環境に配慮した有機材料開発の推進

バイオマスやリサイクル材等を活用したカーボンニュートラルに向けた環境配慮型有機材料の開発のため、企業の皆様との共同研究・開発を目指します。

主な成果

電子回路の設計、試作、家電製品、産業用機器の信頼性評価の他、材料開発、技術開発、 品質管理について人材育成や共同研究を通じた支援を行っています。

外観検査用撮影装置

生産管理システムを構築したうえで、AI画像処理による自動外観検査システムの開発を支援しました。

DXPOT DX Platform Originated by TIIT

工場の見える化システム DXPOT

工場の機械にセンサを取り付け、リモートで稼働状況等のデータが確認できるIoT共通プラットフォームを開発しました。

すくみ足サポート

すくみ足患者の歩行を支援する装置の開発を支援しました。電子回路 設計をはじめ機能開発や検証のための実験、試作等を支援し、製品化 に貢献しました。

高反射率を持つ無機塗料

UV(紫外線)照射による殺菌用途と してUV LEDが高い注目を集めてい ます。紫外線で劣化せず高反射性 を有するレジストインクおよびLED 用基板を企業と共同開発しました。

リサイクルプラスチックペレット

廃プラスチック製品から製造される リサイクルプラスチックペレットの 定期的な強度評価を行い、製品の 品質管理に役立てていただいてい ます。

因州和紙藍染製品

和紙製品の独自藍染加工技法開発 に企業とともに取り組みました。そ の結果、和紙の表情と藍のグラデー ションを活かしたアクセサリー等が 商品化されました。 機械素材研究所では、機械・金属分野での素材から加工までの「ものづくり技術」に係る技術支援や研究開発を行っています。

▶システム制御 グループ

製造工程の自動化・省力化、ロボット技術等の高度化に関する研究開発・技術 支援を行っています。

▶機械・無機材料 グループ

金属・セラミック材料等の機械加工及び各種無機材料に関する研究開発・技術 支援を行っています。

技術相談の例

- ●製品設計時に形状、強度、材料の検討をしたい。
- ●図面のない部品の形状データを再現したい。
- 製造時の加工について条件を検討したい。
- ●金属材料の成分組成を調べたい。

機器紹介

素材から加工まで一貫した『ものづくり技術』に係る技術支援や研究開発など幅広い分野で対応しています。

赤外・ラマン分光分析装置

無機化合物と有機化合物の化学構造を分析する装置。

金属製品のサビである鉄酸化物の 同定やEV自動車の静音に必須の 防振ゴムの分析等ができます。

X線残留応力測定装置

金属の表面または深さ方向の残留 応力を数値化する装置。X線回折法 を利用して、金属材料等の最表面の 残留応力や残留オーステナイト量 を非破壊で測定・解析できます。

精密万能材料試験機

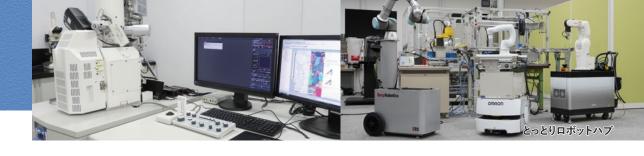
各種材料(金属材料やセラミックス等) の引張強さ、曲げ強さ、圧縮強さなど強 度試験を行う装置。電気炉を備えている ため、任意の温度条件における材料の 機械的特性を評価することができます。

画像測定機

機械部品や電子部品を非接触式 で精密に寸法測定する装置。


輪郭線の2次元測定や国際規格 に対応した幾何公差測定が可能 です。

高精度輪郭形状測定機


鉄鋼材料から樹脂材料まで接触式 で形状計測する装置。

機械要素部品の輪郭形状と表面 粗さを同時に測定することができ ます。

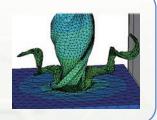
高精度型協働ロボットシステム

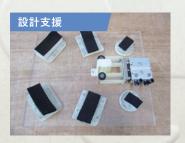
部品挿入等の作業を行うことができます。高度なプログラミング知識を必要とせず直感的にプログラムを組み込むことができるため、初心者でも導入が容易です。

主な取組み

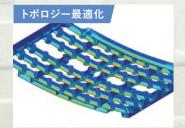
次世代輸送機器の軽量化、資源循環、省エネルギー、製造工程の省力化等への対応を強化し、成長分野への参入を目指す県内企業の技術革新ニーズに応えるための研究開発や技術者育成に取り組みます。

ロボット技術による自動・省力化


とっとりロボットハブを活用し、専用治具、センサ等の各種周辺 機器 を駆使したロボット技術を製造ラインへ実装し、生産工程の自動・省力化を推進します。


シミュレーションによるものづくり技術の高度化

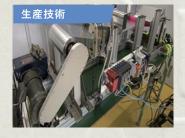
シミュレーションによる加工現象の可視化により、加工技術の高度化や工具·金型寿命の向上 を実現し、脱炭素社会への対応を強化します。



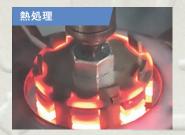
県内企業と技術開発に取り組み社会実装へつなげます。

ねじ締めロボット用治具

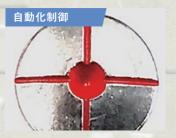
曲面上のねじ締めを行う自動機の製作において、ワークを垂直に設置するための治具や電動アクチュエータを用いた位置決め機構を考案し、製造ラインへの実装を支援しました。


熱処理トレイの軽量化

シミュレーション技術をもとに熱処 理トレイの軽量化設計を支援しました。トレイの剛性と強度を維持した 上で軽量化を実現し、企業へ技術 移転しました。


次世代自動車用配電部材 (バスバー)の量産技術開発

電気自動車等で大容量電流を分岐する際に必須な配電部材の量産に向けた加工方法について共同研究を行い、特許出願し技術移転しました。


アルミ端面制御

薄さ1mmのアルミコイル製品の端面補正を自動で行うことが可能な安価な装置を開発し、企業に技術移転をしました。

磁束密度制御治具

起伏が大きく薄い部品において熱処理が不十分な箇所が生じることを防止するため、磁束密度を制御する治具を開発し、複雑形状部品に選択的に高周波焼き入れ可能な方法を技術移転しました。

アンカーボルト製品 十字溝塗装の自動化

アンカーボルト製品の頭部の十字溝 に赤色塗料を一定量滴下するピペットと協働ロボットを組み合わせて塗 装の自動化実験を行い、生産性の向 上と作業環境の改善を実現しました。 食品開発研究所では、農畜水産物の加工や機能性食品、発酵食品等の技術支援や研究開発を行っています。

▶食品加工 グループ


食品加工全般、農商工連携推進に関連する技術に関する研究開発・技術支援を行っています。

▶発酵・機能性食品 グループ

フードテック、バイオ技術を活用した酒類等の発酵食品、機能性食品等に関する研究開発・技術支援を行っています。

▶食品安全・品質技術 グループ

食品の品質保持に関する研究開発・技術支援並びに 衛生管理、製造工程管理、HACCP等の認証取得に関 する相談対応や各種講習会を行っています。

技術相談の例

- ●果物や野菜を保存性の良い粉末に加工したい。
- ●利用価値の低い魚や加工副産物を活用したい。
- ●他社との差別化に繋がるような味覚に関するデータをとりたい。
- ●商品の賞味期限を延長したい。

機器紹介

試作加工から商品開発、品質評価、成分分析まで一貫した 技術支援を行うための機器を多数用意しています。

有機酸分析システム

食品等に含まれる酢酸やクエン酸、 乳酸等の有機酸を分析する装置で す。食品中の有機酸を分離定量す ることで、その食品の特長を示すこ とができます。

味覚センサー

様々な食品や飲料等の旨味、塩味、 苦味などを測定し、それを数値化、 グラフ化することにより、客観的に 自社製品の特長の把握や、他社製 品との比較が行えます。

卓上型電子顕微鏡

前処理なしで、10万倍までの拡大観察画像の撮影が可能で、元素分析装置により金属片等の食品に混入した異物の解析に活用できます。

真空凍結乾燥機

加熱乾燥では損なわれやすい栄養 成分や機能性成分、風味や色調等 を、より損なうことなく乾燥させる装 置です。復元性の検討やフリーズド ライ食品の試作が行えます。

スプレードライヤー

粉末状の食品素材や機能性食品素 材の試作開発に用いる装置で、液 体や液体・固体の混合物(スラ リー)を熱風気流中に噴霧して、急 速に乾燥粉体化させます。

レトルト試験機

「オリジナルのレトルト食品を開発 したい」といった相談等に対応して、 小ロットでの試作検討ができる装 置で、食感の変化を確認しながら殺 菌条件の検討が行えます。

土な取組み

食品産業の再生と持続的発展を実現するため、フードテック活用によるフードロス削減・アップサイクルの促進や食品の高付加価値化を目指した研究開発や技術者育成、アフターコロナを見据えた商品開発や衛生管理を支援します。

食品産業におけるSDGsの推進

製造現場のフードロス情報から、それらを素材化する研究開発を行い、付加価値の高い「とっとり発アップサイクル食品」の開発を行います。

食品の衛生管理の推進

事業者の食品の安全・安心の意識向上を図るための 窓口を設置し、相談対応や専門機関へのナビゲート、 衛生管理手法の研修会を実施します。

主な成果

研究開発した技術普及や人材育成事業、技術支援を通して得られた成果の事例です。

味覚分析

焙煎よもぎ茶

春よもぎの風味にこだわった焙煎加工条件を確定するため、官能評価と機器分析を組合せた品質評価を行い、特長のあるよもぎ茶を開発しました。

黒にんにくパウダー

粉砕中に吸湿しやすい黒にんにく を、賦形剤を使わないで乾燥粉末化 できる方法を検討し、スティック状に 包装できるようになりました。

【国際味覚審査機構の「2022年度優秀味覚賞」の二つ星を受賞】

梨のバウムクーヘン

製品を解凍する時の、内部の温度 や水分活性の変化を追跡すること で、持ち帰り時間の延長、解凍後の 賞味期限の延長が可能になり、販 路を拡大できました。

さわら蒸し煮干し

市場価値の低いサワラの幼魚であるサゴシの脂肪量が少ないという特徴を活かし、蒸し干しでつくることで非常に旨味の強い煮干しを開発しました。

サワービール

独自性、地域性をもった商品開発のため、オリジナルな乳酸菌を酒蔵から分離し、試験醸造を経て、酸味に特徴のあるビール「サワービール」の開発につながりました。

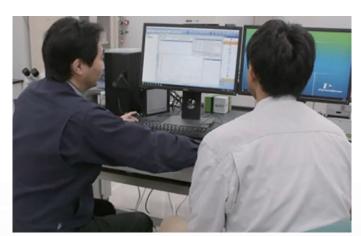
リキュールカプセル

従来法では難しい、アルコールや酸性度の高い液体をシームレスにカプセル化する技術を開発し、アルコール飲料を展開する企業の製品化に貢献しました。

オーダーメイド型

技術者

育成事業


企業の技術課題に対応した オーダーメイド型人材育成研修です。

企業の技術課題解決を図りながら、技術者に必要な 知識やスキルを習得することができます。

「オーダーメイド型技術者育成事業」では、県内企業の皆様が抱える個別の技術的課題の解決を目指し、実践型技術研修を実施します。令和6年度より食品の品質管理に役立つ「微生物検査手法習得コース」を新設しますので、ぜひこちらもご活用ください。

申し込みは随時受け付けておりますので、お気軽にご相談ください。事前相談は各研究所までお願いします。

主な成果

【課題解決手法習得コース】

- ●規格外ねばりっこを用いた1.5次加工品の開発
- ●クラフトビールの製造技術習得

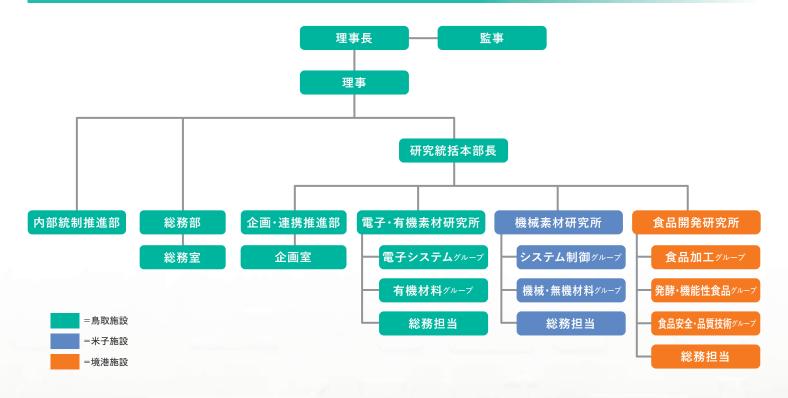
【AI・IoT・ロボット技術習得コース】

- ●省人化に向けたロボット導入(3D CAD技術習得)
- ●ランダムピッキングのためのロボット・センサ制御技術

参加者の声・経営者の声

「ステンレス鋼の化学発色処理」 (株)アサヒメッキ(鳥取市)

研究開発を通じて、工業製品として生産するためのプロセスを構築することができ、客観性を保った検査・評価技術を確立することができました。


「アジフライの科学的評価」 (株)角屋食品(境港市)

様々な分析手法や結果の解釈等、基礎から 丁寧に教えていただき、食品科学の基本を 身に付けることが出来ました。また、専門的 な理化学機器の分析から、計画段階で想定 していた以上の発見があり、大きな収穫と なりました。

コース名	内容	研修期間	参加費(1名あたり)
課題解決手法 習得コース	「自社製品の魅力を数値化してPRしたい」、「食品の賞味期限を延長したい」、「アイデアを具現化(製品や電子基板の設計・試作)したい」等企業が抱える技術課題を解決するために必要な分析・評価、設計・試作などの技術を習得します。	課題に応じて設定 (3、6、9、12ヵ月)	2,000円(1ヶ月)
Al·loT·ロボット 技術習得コース	「目視検査していた画像検査工程をAIで自動化したい」、「危険な作業工程や単純作業工程をロボットに置き換えたい」等の省力化・自動化技術を製造ラインに実装するために必要なプログラミング法や各種センサの活用法などを習得します。		
分析技術 習得コース	企業の個別技術課題の解決を目指し、センター機器を用いて一 歩進んだ異物分析や物性評価等を行うための高度な知識や技 術を習得します。	1日 または 2日	5,000円(1日)
微生物検査手法 習得コース	食品の品質管理に必要な微生物検査の知識や技術を習得します。	2日	10,000円(2日)

組織体制 (令和7年4月1日現在)

県内外機関との連携支援体制の構築

企業の技術開発や事業化を目指した取組を支援するため、行政、学術機関、産業支援機関等の県内外機関と連携し、企業現場の課題を共有し解決策を提案します。

その他のサービス

●機器使用料、依頼分析手数料の減額について

県内に主たる事務所を置く小規模事業者は、研究開発力の向上や新製品開発を支援する ことを目的に、機器使用料・依頼分析手数料の減額を行っています。

減額を受けるためには、予め当センターへの登録申請及び当センターの承認が必要です。 詳しくは、当センターのホームページをご覧ください。

地方独立行政法人鳥取県産業技術センターご案内

本部/電子·有機素材研究所

〒689-1112 鳥取県鳥取市若葉台南七丁目1-1 TEL 0857-38-6200 FAX 0857-38-6210

鳥取空港より車で35分 JR鳥取駅より車で15分

機械素材研究所

〒689-3522 鳥取県米子市日下1247 TEL 0859-37-1811 FAX 0859-37-1823

米子空港より車で40分 JR米子駅より車で20分

食品開発研究所

〒684-0041 鳥取県境港市中野町2032-3 TEL 0859-44-6121 FAX 0859-44-0397

米子空港より車で10分 JR境港駅より車で5分

当センターのサービス・研修・機器については、ホームページをご覧ください。

ホームページ

https://tiit.or.jp/

YouTube

https://www.youtube.com/@tiit-tottori

●発行/

〒689-1112 鳥取県鳥取市若葉台南七丁目1-1 TEL 0857-38-6200 FAX 0857-38-6210

ホームページ https://tiit.or.jp/

tiitkikaku@tiit.or.jp